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ABSTRACT

The development of constitutive laws for large-strain plastic flow re-
quires both an appropriate kinematic framework to characterize the deformation
and a suitahble set of physical relations between the selected measures of
stress and strain rate. In this paper it is argued that deformation is best
characterized by taking, as the measure of strain rate, the stretching (the
symmetric nart of the velocity gradient) and acsuming that it can be repre-
sented as the sum of an elastic and a plastic part. Though this is a natural
extension (or perhaps only a restatement) of the 1930 hypothesis of Reuss, its
consequences differ from some more recent hypctheses based on modern theories
of deformation. Since plastic flow laws are 2xpiessed in rata form it is nec-
essary to have a suitable definition of stress rate., Though tnis has been a
subject of much analysis and numerous hypotheses, Dienes has shown that a
unique stress rate follows from the necessity of formutating the constitutive
law in material axes, and that such a stress rate is frame invariant. The
same paper shows the relation of rate of angular velocity (material rotation
rate), deformation and spin (vorticity). In this paper this formulation is
used in expressing constitutive relations for plastic flow, including bnth
ideal plasticity and kinematic hardening, and the results are compared w'th
those ubtained using the Zaremba-Jaumann-Noll approximation.

INTRODUCTION

The theory of plasticity can be extended to account for finite deforma-
tion in a variety of ways. 1In particular, Lee [1959] and Mandel [1973, 1981]
have proposed that the deformation gradient F can be represented as tne prod-

uct of elastic and plastic parts Fer. but this hypothesis does not, by it~
self, lead to a unique representation, A comprehensive discussfon of chis and
related points has been put forth by Nemat-Nasser [1979] in which he argues
that the deformation rate D can be represented as the sum of elastic and plas-
tic parts without raising the paradoxical problems arising from the product
decomposition indicated above., In addition to the kinematic tssues discussed
hy Nemat-Nasser, other arguments n favor of the additive hypothesis for
strain rates can be put forth, First, for flows without shear comprnents it
is straightforward to show that the choice of stretching (deformation rate) as
a measure of strain rate is equivalent to the choice of logarithmic strain as



a measure of strain, For such simple flows the addition of elastic and plas-
tic strain rates becomes aquivalent to taking the total stretch as the product
of elastic and plastic stretches, a natural decomposition rule., Second, the

stretching D = (dij) appears naturally in the calculations of the rate of work

done on a deformable body V with surface S,

W = £ Uin;oy, ds = J °1jd1j dv . (1)

It seems reasonable to preserve di' as a measure of strain rate in the formu-

lation of constitutive laws since it necessarily appears in the calculation of
internal energy. The separation of strain rate into a sum of parts allows the
energy associated with each part to be computed, and these energies are addi-
tive. (Such energy considerations are fundamental in mechanics. It has been
shown, for example, by Nienes [1978] that the energy equation can be used to
derive the momentum equations, and that the converse does not hold.) Third,
in finite difference calculations it 1is natural and straightforward to compute
the velocity gradient u, ., and thus convenient to select this as the basis

for computing strain rate” (the symmetric part of the velocity gradient). None
of these arguments is completely compelling and, in fact, any constitutive law
relating any measures of stress and strain can be used for calculation. 0Nne
should not expert, however, that all will he equally useful, stable, and accu-
rate, The simplest and most natural hypothesis seems to be to adopt the
stretching as the basic measure of deformation. In this article the conse-
quences of this choice are pursued for ideal plasticity and kinematic harden-
ing. The results seem plausible and straightforward.

CONSTITUTIVE RELATION

If it is assumed that the strain rate is the sum of elastic and plastic
paves, it is necessary to formulate a constitutive law for each part, The
elastic part of strain rate can be set proportional to the stress rate, as in
hypoelasticity, but then it becomes important that the stress rate be suitably
chosen, It has been shown by Dienes [7] that stress rate should bhe defined

using (o = QRT) as the rate of material rotation, and that 2 can bhe expressed

exactly as the vorticity plus an additional rate term. For small daeformations
this stress rate is equivalent to the Zaremba-Jaumann-Noll (ZJN) stress rate,

but for large deformations the ZJN stress rate is unrealistic and can lead to

an instabhility,.

Formulation of a constitutive law for ideally-plastic flow presents no
real difficulty beyond defining the rates of stress and strain suitable, but a
hardening plasticity theory is often needed for added reaiism, and such theo-
ries abound. They can be taken as either isotropic or nisotropic, hut meas-
urements of yleld surfaces performed by Philiips and Tang [1972] tend to show
that yield surfaces translate in stress space rather than expand isotrop-
ically. This behavior is represented in the kinematic hardening algorithn of
Prager [1955], in which a back stress is defined ty a rate equation, This
formulation again raises the problem of defining ctress rate in a suttable
manner, It has been found by Naategaal and de Jen: [1¢:41] that use of the 7ZJN
rate in connection with kinematic hardening leads *a an unrealistic oscilla-
tory behavior at large strains. As a result, Lee, " ‘ett and Werthctimer have
proposed an alternative kinematics of plisticity [1¢83], while Dafaltas [1983]



has considered the finite deformation stress rate described by Green [1967]
and studied in detail by Dienes [1979]. An alternative is proposed in this
paper based on the finite deformation stress rate and the additive assumption
for resolving strain rate into elastic and plastic parts. In an example, the
consequences of these assumptions are compared with the ZJN theory for pure
shear, and it is shcwn that the proposed approach leads to plausible results
at large strain, whereas the ZJN theory leads to the unrealistic oscillation
observed by Nagtegaal and de Jong, and no correction (as in Reuss' original
theory [1930]) leads to paradoxical behavior, Similar results have been re-
cently presented by Key E1983], but the emphasis in this paper is somewhat
different, fccussing on the definition of strain rate, and demonstrating how
the current approach elimirates the unrealistic behavior at small strains ob-
tained by Dafalias as a result of assuming rigid-plastic behavior,

THENRY

The classical approach to problems of plastic flow is to express the
strain rate as the sum of elastic and plastic contributions

n=n0%+ 0P (2)

as suggested by Reuss (op. cit.) and to formulate separate constitutive laws
for the terms on the right. Though a variety or definitions of strain rate
have been propcsed, many of which are described by Eringen [1967], the most
straightforward is to follow the usage in hypoelasticity in which the velocity
gradient G is taken as the sum of symmetric and antisymmetric parts, and the
symmetric part, N, is selected to be the strain rate, so that

(ui’j)=G=D+N (3)

where W is the vorticity. This notation and much of the terminology used here
follow Truesdell [1966]. Though the term "stretching" for D does not present
any difficulty, when it is identified as the "strain rate" a semantic diffi-
culty arises because this suggest that it represents the rate of a well-
defired strain. Though this idea works for small deformations, for finite de-
formations no completely suitahle strain has been defined in terms of the de-
formation, and, so far as I know, there is none whose rate is D, This is not
a yreat loss, since an alternative quantity, the stretch, characterizes defor-
mation adequately. 0Nf course, one can define the strain matrix as the loga-
rithm of the stretch matrix, and in the ahsence of shear this strain repre-
sents the logarithmic strain, but 1n general no useful result is forthconing,
and i1ts rate of change iy not 0.

As the constitutive relation for the elastic component of strain rate n®
1t 1is natural to take the stress rate to be linear in the stress rate. For
small deformations the stress rate 1s adequately characterized by the approxi-
mate rate of Zaremba [1903], Jaumann [1911], and Noll [1955]

3 =g - Wo + oW (4)

but for large deformations it 1s necessary to use an exact formulation, as
discussed by Dienes [1979], in which



g =a- Q0+ o0 (5)

where Q denotes the rate of material rotation

9 = BRI (6)

and R denotes material rotation. This expression for stress rate has been
noted hy Green ard McInnis [1967], Storen and Rice [1975] and others, but the
relation of @ to vorticity, W, summarized in the subsequent paragraph, was de-
rived by Dienes [1979].

The basis for the analysis of large deformation is the polar decomposi-
tion of the deformation gradient

axi
F = <a,_>= VR (7)
)

where X, represents the coordinates of the point initially at Ei» V is the

(positive definite) stretch and R is crthogonal. To obtain the relation of 2
and W define

z

v - \D (8)

and

S = (1trv-y) (9)

where tr V denotes the trace of V and 1 denotes the identity matrix. The
antisymmetric matrix Z can be represented as a vector with components 2, by
means of the permutation symbol E1jk so that

Then, 1f one defines

A‘lk = Sjp,zzeijk , (11)

it can be shown by direct algebraic calculation that
Q=W+ A, (1?2)

where A {s the matrix of the A1 . This algorithm has been successfully uvsed

in calculations of large deformation with SCRAM, a version of the finite dif-
ference SALE code developed by Amsden, Ruppel, and Hirt [19807, witn the addi-
tional relation

bagv-va , (13)

used to update V in the course of the calculation. Tfhese results are kinemat-
fc and do not depend on material behavior,



The plastic stretching is taken proportional to the deviator stress, o',

P = ro' = Ao - ol) (14)
in ideal plasticity, and A can be determined from the yield condition

2

= 2 (15)

°15%1
to be

- 1 4P 2
A= °1jd1j/2Y . (16)

These equations can be combined to obtain an expression for the rate of change
of deviator stress

7' =o' + o'+ 2u(D' - Ag') (17)

that can be used conveniently in numerical calculations to update the stress.
In impact and explosion problems it is necessary to supplement therse equations

with an equation of state for the mean stress g, In this paper, however, we
consider only the simplest flows.

Before proceeding to a discussion of hardening behavior it will prove
useful to consider first the consequerces of these constitutive relations in
the example of steady simple shear, for which

X, = . (18)

whare g is defined by

e =3 ¢ 27 tan 8 (20)

L4

ﬁq
~n

and that the vorticity is given by
Wip * 872 = B/(1 + 8°) . (21)

Thus, Q,, 1s well approximated by wl for small strain, but the approximation
fails for large strain. For such a glow the stretching is given by

n = ( 0 é/%) ) (27)
e/2 0



It fcilows that the mean stress satisfies

2
5 = O WH/Y

(23)

where 5° is the initial value of the mean stress, Hence, if 50 is initially
zero, it is zero for all times, Since the flow stress remains on the yield
surface after initial yielding, it follows that it depends on a single varia-
ble, which we select as 8, such that

o7 = Y sin 0, g1p = Y COS B . (22)

[

With this constraint, each of the flow equations (17) reduces to

de sin 8 1
+ = (25)
HE ZE 1 + e2/4
whe e
e = Y/2u . (26)

To determine the initial conditions we may use the elastic solution of Dienes
(19791, which shows that yield occurs when 6 = ¢, to first order, under the
(realistic) assumntion that e is small. No closed form solution to (%5) is
known, but an approximate solution can be obtained by putting 8 = ey.

uw=2-=-exp (l-e/2) - e2/2 + 2ce ., (27)

This expression for & has a maximum of 1.99 for e = 0.14 when ¢ is set to
N.01, A numerical sclution of (25) is shown in Figure 1. The maximum agrees
with the analytic results, but the numerical solution shows in addition that o
goes to zero for large e, The figure alsn shows the behavior of & when the
effect of material rotation 1s ignored, which is tantamount io dropping the
right side of (24), In that case 0 drops ranidly to zern. If the ZJN approx-
imation is used the right side of (25%) becomes unity, and the resulting behav-
ior of 9 is also 1llustrated in the figure. In that case 8 increases mono-
tonically to .N2 with increasing strain and remains at that value. In summa-
ry, it appears to be necessary to account for finite deformation in computing
stress rate in plasticity as well as in elasticity if realistic material be-
havior is to he ohtained at strains larger than 0.4,

KINEMATIC HARDENING

In their analysis of hardening behavior Nagtegaal and de Jong [1981] oh-
served spurious oscillatory hehavior of stress with increasing strain,
Nafalias [1983] recently showed that this oscillatory behavior is a conse-
quence of using the 2JN approximation, and disappears when the finite deforma-
tion theory 1s used. He was able to obtain an analytical solution for the
stresses in a simple shear flow by assuming rigid-plastic behavior, Here we
consider kinematic hardening with the finite deformation theory used to char-
acterize both the elastic strain rate and the back stress. Though I described
2 general kinematic hardening theory suitable for high-pressure behavior in an
earlier paper [Nienes, 1975] only the simplest kinematic hardening theory fs
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Fig. (1) - A comparison of the stress parameter s ( = Y sin 9) for s mple
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shear; (1) in the absence of stress rotation (Reuss); (2) using the
Zaremba-Jaunann-Noll (ZJN) approximation; and (3) using finite
rotation theory. For e less than N.,N2 the behavior is elastic.

The ZJN approximation produces insignificant error for strains
helow 0.2,

considered here, with the object of illustrating the importance of an adequate
stress rate theory.

The experimental results of Phillips and Tang [op, cit,] show that the
suhsequent yield surfaces observed after loading resemble those of kinematic
rather than isotropic hardening theory. In the simplest representation of
such behavior, the deviator stress is considered as the sum of a back stress
a and a plastic stress S

o' 2 a+ S (28)
with § lying on a displaced yield surface, so that

< G = 2 Q)
where Y {s the yield stress in simple shear, Following Prager [1955], the
back stress rate 1s assumed proportional to the plastic strain rate

A

a*a-0a+a = bdP (30)

where b {s the hardening modulus of the material, except that g rather than
W is used for the rate of material rotation, The generalization to harden-
ing plasticity is completed by the relations



D% = S/2u + lo/3k (31)

where o denotes the mean stress; k, bulk modulus; and

oP = (a/2Y)S . (32)
With these assumptions it is straightforward to show that

A= Ysijd‘ij = YW (33)

where
1/y = (1 + b/2y)Y . (34)

Using the same procedure as in the analysis of ideally plastic behavior, it
is straightforward to show that, if 7 = ay + a,, vanishes initially, then

it remains zero throughout the deformation. As before, it proves natural to
set

S11 =Y sin g , 512 =Ycos e . (35)

Nirect calculation shows that 5 is still governed by (25) in the presence of
hardening.

If we define the dimansionless quantities

a;p = ap/b A, =ap,/h /g =2+ by (36)

then these equations reduce to the pair

da a

1 . 2
= q cos # sin @ + (37)
® T
da, 2 3
=qCos” B - ——m— . (38)
de 1 +e~/4

The results of numerical integration of these equations are are illustrated in
Figures 2 and 3, and, as in Figure 1, comparisons are made with the ZJN ap-
proximation and with the behavior calculated in the absence of a correction
for rotation. These results illustrate that it is important to account for
material rotation exactly 1f reasonable results are to be obtained for large
deformation. The results are similar to those of Nafalias except for small
strains, since here the rigid-plastic assumption is relaxed. (This makes it
necessary to perform the integrations numerically, whereas Dafalias obtains an
analytic solution.) In general, however, numerical solutions are required,
and the algorithm of equations (8-13) seems well suited for that purpose. In
referring to this algorithm both Lee et al [1983] and Dafalias [1983] suggest
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that it is vclid only for nypoelastic deformations. This misinterpretation
appears to arise from considering only the example I selected, which involves
the simplest material for which a rate law formulation is appropriate. The
underlying theory, however, is entirely general, involving only kinematics,
and makes no material assumptions beyond those usual in continuum mechanics
and the polar decomposition theorem,

In summary, the approach to plasticity outlined here maintains Reuss'
classical superposition of elastic and plastic strain rates, but requires that
the rate of material rotation @, given by (12), be used in computing stress
rate, ratiier than its approximate representation, the spin (vorticity). In an
example, it is shown herein that this approach provides reasonable results and
ca) be readily implemented.

Professor Bell has performed an important service in organizing and ex-
tending experimental results concerning plastic flow [1979, 1981]. Their full
understandino will require significant theoretical advances, including a bet-
ter treatment of the role of microstructure. At large deformations it is nec-
essary to account for the kinematics of deformation precisely, and continuun
mechanics, especially the consequences of polar decomposition, provides a use-
ful approach. The kinematics and physics of large deformation are particular-
ly important in the analysis of material benavior on the microstructural lev-
ei, where crystal anisotropy and mechanical instabilities play important
roles. For example, microstructural instabilities probably underlie the
second-order transitions observed by Bell. The behavior of microstructure is
even more important in its role in the nucleation of fracture. Our under-
standing of the relationship of instabilities at the microstructural level and
material strength has only just begun. To make significant progress it ap-
pears that it will be recessary to combine careful experiments, ccmputer simu-
lation, more precise kinematics, and condensed-matter physics, a process which
has oniy recently started.
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